The Hierarchy of Hyperlogics*: *A Knowledge Reasoning Perspective*

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, <u>Jana Hofmann</u>

CISPA Helmholtz Center for Information Security

17th International Conference on Principles of Knowledge Representation and Reasoning

18 September 2020

Expressiveness Study

Temporal logics for hyperproperties vs First-order/second-order logics for hyperproperties

inspired by Kamp's theorem: LTL = FO[<] and QPTL = S1S, CTL* = MPL, QCTL* = MSO

FO/SO hyperlogics are in general more expressive than their temporal counterpart

Hyperproperties

Hyperproperties relate multiple execution traces.

- Noninterference
- Robustness

- Distributivity
- Fault tolerance

• Epistemic properties!

Temporal Logics for Hyperproperties

Temporal hyperlogic = temporal logic + trace/path quantification

HyperLTL = LTL + trace quantification [Clarkson et al, 2014]

System

"All traces globally agree on a":

$$\forall \pi. \forall \pi'. G(a_{\pi} \leftrightarrow a_{\pi'})$$

LTL with indexed atomic propositions

First-Order/Second-Order Hyperlogics

FO/SO hyperlogic = monadic FO/SO logic + < predicate + E predicate

FO[<,E] = FO[<] + equal-level predicate [Finkbeiner et al, 2017]

System

"All traces globally agree on a":

$$\forall x. \forall y. \ E(x,y) \rightarrow (P_a(x) \leftrightarrow P_a(y))$$

Hyperlogics and Knowledge Reasoning

Temporal Hyperlogics vs FO/SO Hyperlogics:

FO/SO logics are in general more expressive than their temporal counterpart

HyperQPTL can express knowledge operator from LTL \mathcal{K}

 \implies epistemic reasoning + ω -regular expressions

epistemic reasoning over distributed architectures

For more see:

Coenen, Finkbeiner, Hahn, Hofmann The Hierarchy of Hyperlogics, LICS 2019

Classic reasoning methods (tableau, chase, etc) directly applicable to hyperlogics like FO[<,E] / S1S[E] / ...

new decidability results?